Поиск по сайту
О журналеПроектыОформить подпискуКонтакты

Информационно-аналитический журнал

Новости образовательных организаций. Аналитические материалы. Мнение экспертов.
Читайте нас в
социальных сетях
ВУЗы
НовостиВузыБолонский процессНегосударственное образованиеФГОСУМОФедеральные вузыВнеучебная работа
Образование в России
ШколаСПОДПОЗаконодательствоРегионыМеждународное сотрудничествоОтраслевое образованиеСтуденчество
Качество образования
АккредитацияРейтингиТехнологии образованияМеждународный опыт
Рынок труда
АнализРаботодателиТрудоустройство
Наука
Молодые ученыеТехнологииКонкурсы
Вузы России

Нейросеть обучили определять пол человека по написанному тексту

Многочисленные научные исследования показывают, что в письменном тексте неизбежно отражаются характеристики его автора – пол, психологические особенности, уровень образования.

Просмотров: 23

Коллектив ученых Национального исследовательского ядерного университета "МИФИ", Национального исследовательского центра "Курчатовский Институт" и Воронежского государственного университета разработали метод, обучающий компьютер распознавать пол человека по написанному им тексту с точностью до 80 процентов. Научная разработка относится к области компьютерной лингвистики. Исследование проводилось по гранту Российского Научного Фонда. Результаты опубликованы в журнале Procedia Computer Science.

Многочисленные научные исследования показывают, что в письменном тексте неизбежно отражаются характеристики его автора – пол, психологические особенности, уровень образования. Речь является ценным психодиагностическим инструментом, который используют специалисты кадровых служб крупных компаний, а также служб безопасности.

На основе анализа речи можно диагностировать наличие у человека некоторых заболеваний (деменции, депрессии) и склонность к суицидальному поведению. Потребность в установлении характеристик автора текста также растет с развитием интернет-коммуникаций: компаниям важно знать, каким группам лиц нравятся их товары и услуги.

Ученые, работающие в данном направлении (лингвисты, психологи, специалисты по информационным технологиям), на основе численных значений различных параметров текста строят математические модели для диагностирования тех или иных параметров личности.

Коллектив специалистов проанализировал эффективность различных технологий машинного обучения с использованием нейронных сетей для анализа текстов.

В ходе исследования они сравнили точность решения задачи гендерной идентификации текстов на основе двух подходов к моделированию на основе данных: с одной стороны, алгоритмы машинного обучения (метод опорных векторов и градиентный бустинг), с другой стороны – нейронные сети глубокого обучения (сверточные нейронные сети и рекуррентные нейронные сети с долгой краткосрочной памятью).

«Мы достигли высоких результатов в определении пола автора текста благодаря продвинутым нейросетевым моделям, в условиях, когда автор не скрывает свой пол. На очереди задача определения пола в условиях его намеренного сокрытия», – говорит доцент НИЯУ МИФИ Александр Сбоев.

Так, в следующих текстах, размещенных изначально на сайте знакомств, нейросеть без труда находит подвох в десяти случаях из десяти, притом, что автор намеренно ставит в подписи имя противоположного пола.

Текст написан девушкой: «Я красивый, накачанный мужчина 30 лет. Работаю в крупной нефтегазовой компании на хорошей должности с приличной зарплатой. Живу в собственной квартире в Москве. В собственности также находится небольшой, но симпатичный домик в одной из деревушек Италии. Увлекаюсь спортом, в частности, футболом. Люблю выбираться куда-нибудь на выходные, не терплю домоседок. Девушка, которая мне бы подошла, должна обладать скромным нравом, красивой внешностью и привлекательной фигурой по современным стандартам. Она должна разделять мои интересы, не должна быть ревнивой и не должна пытаться вызвать чувство ревности у меня. Содержать девушку я не собираюсь, так как считаю, что в семье должны работать оба. Бюджет также предпочитаю вести раздельно. Не потерплю измены».

Текст написан мужчиной: «Здравствуйте! Я крайне недовольна, крайне! Почему вы так себя с нами ведете?! Мы же тоже люди, мы все равны! Вы сексист? Я больше не буду это терпеть! Я твою машину вообще всю разобью, разрисую. Жди. Финишу таким быть».

Результаты этого исследования показали, что подход, основанный на использовании сверточной нейронной сети и методов глубокого обучения для распознавания пола человека, написавшего текст, является наиболее оптимальным.

Сейчас группа исследователей работает над задачей распознавания возраста.

Ссылка на оригинал статьи

Нашли ошибку на сайте? Выделите фрагмент текста и нажмите ctrl+enter

Теги: МИФИ, технологии, нейросети

Похожие материалы:
В НИЯУ МИФИ разрабатывают инновационный материал для биоразлагаемого имплантата
Фотоника и бионанотехнологии – новые направления развития для НИЯУ МИФИ
Первый эксперимент на установке МАВР
В НИЯУ МИФИ открыли памятник лауреату Нобелевской премии
МКС и коллайдер: Нобелевский лауреат Тинг рассказал о своих экспериментах
Будущее атомной энергетики – AtomFuture 2018 в Обнинске
Пионер нанотехнологий включил студентов МИФИ в разработку «умных» лекарств
Студент ВИТИ НИЯУ МИФИ стал победителем выставки проектов на кубке Клуба робототехники
ICPPA-2018: хороший старт для молодых учёных
Ученые придумали, как удешевить электронику за счет «водородных пузырей»

При использовании любых материалов сайта akvobr.ru необходимо поставить гиперссылку на источник

Комментарии пользователей: 0 Оставить комментарий
Эту статью ещё никто не успел прокомментировать. Хотите стать первым?
Читайте в новом номере«Аккредитация в образовании»
№ 8 (116) 2019

Послание Президента РФ Федеральному собранию, без преувеличения, стало самым значимым инфоповодом последнего времени. Помимо инициатив по изменению в политической, социальной и других сферах, Владимир Путин озвучил предложения по трансформации системы российского образования. Логичным и весьма быстрым воплощением «слова в дело» стала смена глав двух ведомств: Минобрнауки и Минпросвещения. Что за этим последует - как всегда, покажет время, ну а мы будем держать вас в курсе.
Анонс журнала

Партнеры
Популярные статьи
Итоги регионализации системы управления
Экспертная группа НИУ ВШЭ при участии других заинтересованных сторон провела исследования,...
Из журнала
#110Ивановский колледж культуры развивает таланты
#111Региональный хаб новых компетенций
#108Ректор ТУСУРа Александр Шелупанов рассказал о цифровизации в образовании
#111От возрождения к развитию
#107Роль РГЭУ (РИНХ) в формировании интеллектуального потенциала региона
Информационная лента
11:41В России планируется проведение исследования «PISA для школ»
09:36Якутия – один из центров развития цифровых технологий
15:20RusNanoNet: ученые АлтГУ и ИВМ СО РАН реализуют уникальный проект
14:48РФФИ объявит конкурс на лучшие проекты фундаментальных научных исследований
12:27ВГУЭС участвует в дискуссии о школьном образовании на ВЭФ